Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Gene Rep ; 27: 101619, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1819494

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a remarkably contagious and pathogenic viral infection arising from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China. For the time being, COVID-19 is not treated with a specific therapy. The Food and Drug Administration (FDA) has approved Remdesivir as the first drug to treat COVID-19. However, many other therapeutic approaches are being investigated as possible treatments for COVID-19. As part of this review, we discussed the development of various drugs, their mechanism of action, and how they might be applied to different cases of COVID-19 patients. Furthermore, this review highlights an update in the emergence of new prophylactic or therapeutic vaccines against COVID-19. In addition to FDA or The World Health Organization (WHO) approved vaccines, we intended to incorporate the latest published data from phase III trials about different COVID-19 vaccines and provide clinical data released on the networks or peer-review journals.

2.
Gene Rep ; 27: 101608, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1773330

ABSTRACT

Rapid emergence of covid-19 variants by continuous mutation made the world experience continuous waves of infections and as a result, a huge number of death-toll recorded so far. It is, therefore, very important to investigate the diversity and nature of the mutations in the SARS-CoV-2 genomes. In this study, the common mutations occurred in the whole genome sequences of SARS-CoV-2 variants of Bangladesh in a certain timeline were analyzed to better understand its status. Hence, a total of 78 complete genome sequences available in the NCBI database were obtained, aligned and further analyzed. Scattered Single Nucleotide Polymorphisms (SNPs) were identified throughout the genome of variants and common SNPs such as: 241:C>T in the 5'UTR of Open Reading Frame 1A (ORF1A), 3037: C>T in Non-structural Protein 3 (NSP3), 14,408: C>T in ORF6 and 23,402: A>G, 23,403: A>G in Spike Protein (S) were observed, but all of them were synonymous mutations. About 97% of the studied genomes showed a block of tri-nucleotide alteration (GGG>AAC), the most common non-synonymous mutation in the 28,881-28,883 location of the genome. This block results in two amino acid changes (203-204: RG>KR) in the SR rich motif of the nucleocapsid (N) protein of SARS-CoV-2, introducing a lysine in between serine and arginine. The N protein structure of the mutant was predicted through protein modeling. However, no observable difference was found between the mutant and the reference (Wuhan) protein. Further, the protein stability changes upon mutations were analyzed using the I-Mutant2.0 tool. The alteration of the arginine to lysine at the amino acid position 203, showed reduction of entropy, suggesting a possible impact on the overall stability of the N protein. The estimation of the non-synonymous to synonymous substitution ratio (dN/dS) were analyzed for the common mutations and the results showed that the overall mean distance among the N-protein variants were statistically significant, supporting the non-synonymous nature of the mutations. The phylogenetic analysis of the selected 78 genomes, compared with the most common genomic variants of this virus across the globe showed a distinct cluster for the analyzed Bangladeshi sequences. Further studies are warranted for conferring any plausible association of these mutations with the clinical manifestation.

3.
J King Saud Univ Sci ; 33(4): 101439, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1185114

ABSTRACT

By the end of year 2019, the new virus SARS-CoV-2 appeared, causing the Coronavirus Disease 2019 (COVID-19), and spread very fast globally. A continuing need for diagnostic tools is a must to contain its spread. Till now, the gold standard method, the reverse transcription polymerase chain reaction (RT-PCR), is the precise procedure to detect the virus. However, SARS-CoV-2 may escape RT-PCR detection for several reasons. The development of well-designed, specific and sensitive serological test like enzyme immunoassay (EIA) is needed. This EIA can stand alone or work side by side with RT-PCR. In this study, we developed several EIAs including plates that are coated with either specially designed SARS-CoV-2 nucleocapsid or surface recombinant proteins. Each protein type can separately detect anti-SARS-CoV-2 IgM or IgG antibodies. For each EIAs, the cut-off value, specificity and sensitivity were determined utilizing RT-PCR confirmed Covid-19 and pre-pandemic healthy and other viruses-infected sera. Also, the receiver operator characteristic (ROC) analysis was performed to define the specificities and sensitivities of the optimized assay. The in-house EIAs were validated by comparing against commercial EIA kits. All in-house EIAs showed high specificity (98-99%) and sensitivity (97.8-98.9%) for the detection of IgG/IgM against RBD and N proteins of SARS-CoV-2. From these results, the developed Anti-RBD and anti-N IgG and IgM antibodies EIAs can be used as a specific and sensitive tool to detect SARS-CoV-2 infection, calculate the burden of disease and case fatality rates.

4.
Phytomed Plus ; 1(2): 100027, 2021 May.
Article in English | MEDLINE | ID: covidwho-1032443

ABSTRACT

Background: In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose: LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods: Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results: This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion: This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.

5.
Saudi Pharm J ; 28(11): 1333-1352, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-737543

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organization (WHO) as a global pandemic on March 11, 2020. SARS-CoV-2 targets the respiratory system, resulting in symptoms such as fever, headache, dry cough, dyspnea, and dizziness. These symptoms vary from person to person, ranging from mild to hypoxia with acute respiratory distress syndrome (ARDS) and sometimes death. Although not confirmed, phylogenetic analysis suggests that SARS-CoV-2 may have originated from bats; the intermediary facilitating its transfer from bats to humans is unknown. Owing to the rapid spread of infection and high number of deaths caused by SARS-CoV-2, most countries have enacted strict curfews and the practice of social distancing while awaiting the availability of effective U.S. Food and Drug Administration (FDA)-approved medications and/or vaccines. This review offers an overview of the various types of coronaviruses (CoVs), their targeted hosts and cellular receptors, a timeline of their emergence, and the roles of key elements of the immune system in fighting pathogen attacks, while focusing on SARS-CoV-2 and its genomic structure and pathogenesis. Furthermore, we review drugs targeting COVID-19 that are under investigation and in clinical trials, in addition to progress using mesenchymal stem cells to treat COVID-19. We conclude by reviewing the latest updates on COVID-19 vaccine development. Understanding the molecular mechanisms of how SARS-CoV-2 interacts with host cells and stimulates the immune response is extremely important, especially as scientists look for new strategies to guide their development of specific COVID-19 therapies and vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL